Search results for "Reverse monte carlo method"

showing 3 items of 3 documents

Peculiarities of the local structure in new medium- and high-entropy, low-symmetry tungstates

2022

G. Bakradze acknowledges financial support provided by the Latvian Council of Science for project no. 1.1.1.2/VIAA/3/19/444 (agreement no. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. The Institute of Solid State Physics, University of Latvia, as a centre of excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART2.

Condensed Matter - Materials ScienceHigh-entropy oxidesMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]TungstatesGeneral ChemistryCondensed Matter Physics540ddc:540Reverse Monte Carlo methodGeneral Materials ScienceSolid solutionsExtended X-ray absorption fine structure
researchProduct

In Situ Study of Zinc Peroxide Decomposition to Zinc Oxide by X‐Ray Absorption Spectroscopy and Reverse Monte Carlo Simulations

2022

The authors wish to thank Dr. R. Kalendarev for the synthesis of ZnO2 sample. A.K. would like to thank the financial support of the ERDF Project No. 1.1.1.1/20/A/060. The experiment at the MAX IV synchrotron was performed within the project 20190823. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Condensed Matter - Materials Sciencereverse Monte Carlo methodX-ray absorption spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsEXAFSCondensed Matter::Materials Sciencephase transitionZnOPhysics::Atomic and Molecular ClustersZnO2physica status solidi (b)
researchProduct

Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces.

2010

A microscopic formalism based on computing many-particle densities is applied to the analysis of the diffusion-controlled kinetics of pattern formation in oppositely charged molecules on surfaces or adsorbed at interfaces with competing long-range Coulomb and short-range Lennard-Jones interactions. Particular attention is paid to the proper molecular treatment of energetic interactions driving pattern formation in inhomogeneous systems. The reverse Monte Carlo method is used to visualize the spatial molecular distribution based on the calculated radial distribution functions (joint correlation functions). We show the formation of charge domains for certain combinations of temperature and dy…

PhysicsKineticsStatic ElectricityPattern formationReverse monte carlo methodsymbols.namesakeMolecular dynamicsDipoleKineticsModels ChemicalChemical physicsQuantum mechanicsCoulombsymbolsMoleculeComputer SimulationColloidsvan der Waals forcePhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct